12. Наибольшее и наименьшее значение функций: все задания
Найдите точку максимума функции $y=\ln(x+5)-2x+10.$
Аргумент логарифма должен быть положительным: $$x+5>0$$ $$x>-5$$Найдем производную данной функции: $$f'(x)=\frac{1}{x+5}-2$$ Приравняем производную к нулю: $$\frac{1}{x+5}-2=0$$ $$\frac{1}{x+5}=2$$ $$1=2x+10$$ $$2x=-9$$ $$x=-4.5$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(-5;-4.5),$ $f'(x)<0$ на промежутке $(-4.5;\infty).$На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $x=-4.5$ — это и есть искомая точка максимума функции $y=\ln(x+5)-2x+10.$
Найдите точку максимума функции $y=\ln(x+6)-4x+8.$
Аргумент логарифма должен быть положительным: $$x+6>0$$ $$x>-6$$Найдем производную данной функции: $$f'(x)=\frac{1}{x+6}-4$$ Приравняем производную к нулю: $$\frac{1}{x+6}-4=0$$ $$\frac{1}{x+6}=4$$ $$1=4x+24$$ $$4x=-23$$ $$x=-5.75$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(-6;-5.75),$ $f'(x)<0$ на промежутке $(-5.75;\infty).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $x=-5.75$ — это и есть искомая точка максимума функции $y=\ln(x+6)-4x+8.$
Найдите наименьшее значение функции $$y=4x-4\ln(x+7)+6$$ на отрезке $[-6.5;0].$
Аргумент логарифма должен быть положительным: $$x+7>0$$ $$x>-7$$Найдем производную данной функции: $$f'(x)=4-\frac{4}{x+7}$$ Приравняем производную к нулю: $$4-\frac{4}{x+7}=0$$ $$\frac{4}{x+7}=4$$ $$4=4x+28$$ $$4x=-24$$ $$x=-6$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной на промежутке $[-6.5;0]$: $f'(x)<0$ на промежутке $[-6.5;6),$ $f'(x)>0$ на промежутке $(-6;0].$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $x=-6$ — это точка минимума функции.
Найдем значение функции $y=4x-4\ln(x+7)+6$ в данной точке: $$y=4\cdot(-6)-4\ln(-6+7)+6=-18$$
Найдите наименьшее значение функции $$y=9x-9\ln(x+11)+20$$ на отрезке $[-10.5;0].$
Аргумент логарифма должен быть положительным: $$x+11>0$$ $$x>-11$$Найдем производную данной функции: $$f'(x)=9-\frac{9}{x+11}$$ Приравняем производную к нулю: $$9-\frac{9}{x+11}=0$$ $$\frac{9}{x+11}=9$$ $$9=9x+99$$ $$9x=-90$$ $$x=-10$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной на промежутке $[-10.5;0]$: $f'(x)<0$ на промежутке $[-10.5;-10),$ $f'(x)>0$ на промежутке $(-10;0].$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $x=-10$ — это точка минимума функции.
Найдем значение функции $y=9x-9\ln(x+11)+20$ в данной точке: $$y=9\cdot(-10)-9\ln(-10+11)+20=-70$$
Найдите точку максимума функции $y=2x^2-13x+9\ln{x}+8.$
Аргумент логарифма должен быть положительным: $$x>0$$ Найдем производную данной функции: $$f'(x)=4x-13+\frac{9}{x}$$ Приравняем производную к нулю: $$4x-13+\frac{9}{x}=0$$ $$4x^2-13x+9=0$$ $$x_1=1$$ $$x_2=2.25$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(0;1)\cup(2.25;\infty),$ $f'(x)<0$ на промежутке $(1;2.25).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $x=1$ — это и есть искомая точка максимума функции $y=2x^2-13x+9\ln{x}+8.$
Найдите точку максимума функции $y=0.5x^2-27x+50\ln{x}+5.$
Аргумент логарифма должен быть положительным: $$x>0$$ Найдем производную данной функции: $$f'(x)=x-27+\frac{50}{x}$$ Приравняем производную к нулю: $$x-27+\frac{50}{x}=0$$ $$x^2-27x+50=0$$ $$x_1=2$$ $$x_2=25$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(0;2)\cup(25;\infty),$ $f'(x)<0$ на промежутке $(2;25).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $x=2$ — это и есть искомая точка максимума функции $y=0.5x^2-27x+50\ln{x}+5.$
Найдите наименьшее значение функции $$y=(x+3)^2(x+5)-2$$ на отрезке $[-4;-1].$
Найдем производную данной функции: $$f'(x)=2(x+3)(x+5)+(x+3)^2$$ $$f'(x)=(x+3)(3x+13)$$ Приравняем производную к нулю: $$(x+3)(3x+13)=0$$ $$x_1=-3$$ $$x_2=-\frac{13}{3}$$ Промежутку $[-4;-1]$ принадлежит только $x=-3.$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной на промежутке $[-4;-1]$: $f'(x)<0$ на промежутке $[-4;-3),$ $f'(x)>0$ на промежутке $(-3;-1].$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $x=-3$ — это точка минимума функции.
Найдем значение функции $y=(x+3)^2(x+5)-2$ в данной точке: $$y=(-3+3)^2(-3+5)-2=-2$$
Найдите наименьшее значение функции $$y=(x-7)^2(x+8)-4$$ на отрезке $[1;12].$
Найдем производную данной функции: $$f'(x)=2(x-7)(x+8)+(x-7)^2$$ $$f'(x)=(x-7)(2x+16+x-7)$$ $$f'(x)=(x-7)(3x+9)$$ Приравняем производную к нулю: $$(x-7)(3x+9)=0$$ $$x_1=7$$ $$x_2=-3$$ Промежутку $[1;12]$ принадлежит только $x=7.$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной на промежутке $[1;12]$: $f'(x)<0$ на промежутке $[1;7),$ $f'(x)>0$ на промежутке $(7;12].$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $x=7$ — это точка минимума функции.
Найдем значение функции $y=(x-7)^2(x+8)-3$ в данной точке: $$y=(7-7)^2(7+8)-4=-4$$
Найдите наименьшее значение функции $$y=4\tg{x}-4x-\pi+5$$ на отрезке $[-\frac{\pi}{4};\frac{\pi}{4}].$
Найдем производную данной функции: $$f'(x)=\frac{4}{\cos^2x}-4$$ Найдем нули производной на отрезке $[-\frac{\pi}{4};\frac{\pi}{4}]$: $$\frac{4}{\cos^2x}-4=0$$ $$\frac{1}{\cos^2x}-1=0$$ Так как косинус может принимать значения от $-1$ до $1,$ производная данной функции всегда будет положительной, значит, функция будет всегда возрастающей.
Функция будет возрастать на всем промежутке $[-\frac{\pi}{4};\frac{\pi}{4}].$ Наименьшее значение функция будет принимать в точке $-\frac{\pi}{4}.$
Найдем значение функции $y=4\tg{x}-4x-\pi+5$ в данной точке: $$y=4\tg\Big({-\frac{\pi}{4}}\Big)-4\cdot \Big( -\frac{\pi}{4}\Big)-\pi+5=1$$
Найдите наименьшее значение функции $$y=12\tg{x}-12x-3\pi+18$$ на отрезке $[-\frac{\pi}{4};\frac{\pi}{4}].$
Найдем производную данной функции: $$f'(x)=\frac{12}{\cos^2x}-12$$ Найдем нули производной на отрезке $[-\frac{\pi}{4};\frac{\pi}{4}]$: $$\frac{12}{\cos^2x}-12=0$$ $$\frac{1}{\cos^2x}-1=0$$ Так как косинус может принимать значения от $-1$ до $1,$ производная данной функции всегда будет положительной, значит, функция будет всегда возрастающей.
Функция будет возрастать на всем промежутке $[-\frac{\pi}{4};\frac{\pi}{4}].$ Наименьшее значение функция будет принимать в точке $-\frac{\pi}{4}.$
Найдем значение функции $y=12\tg{x}-12x-3\pi+18$ в данной точке: $$y=12\tg{\Big(-\frac{\pi}{4}\Big)}-12\cdot \Big(-\frac{\pi}{4}\Big)-3\pi+18=6$$
Найдите точку максимума функции $$y=(2x-3)\cos{x}-2\sin{x}+3$$ принадлежащую промежутку $\Big(0;\frac{\pi}{2}\Big).$
Найдем производную данной функции: $$f'(x)=2\cos{x}-(2x-3)\sin{x}-2\cos{x}$$ $$f'(x)=-(2x-3)\sin{x}$$ Найдем нули производной на отрезке $\Big(0;\frac{\pi}{2}\Big)$:$$-(2x-3)\sin{x}=0$$ Произведение равно нулю, когда один из множителей равен нулю, но на отрезке $\Big(0;\frac{\pi}{2}\Big)$ $\sin{x}>0.$ Значит: $$-(2x-3)=0$$ $$x=1.5$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(0;1.5),$ $f'(x)<0$ на промежутке $(1.5;\frac{\pi}{2}).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $1.5$ — это и есть искомая точка максимума функции $y=(2x-3)\cos{x}-2\sin{x}+3.$
Найдите точку максимума функции $$y=(4x-1)\cos{x}-4\sin{x}+7$$ принадлежащую промежутку $\Big(0;\frac{\pi}{2}\Big).$
Найдем производную данной функции: $$f'(x)=4\cos{x}-(4x-1)\sin{x}-4\cos{x}$$ $$f'(x)=-(4x-1)\sin{x}$$ Найдем нули производной на отрезке $\Big(0;\frac{\pi}{2}\Big)$:$$-(4x-1)\sin{x}=0$$ Произведение равно нулю, когда один из множителей равен нулю, но на отрезке $\Big(0;\frac{\pi}{2}\Big)$ $\sin{x}>0.$ Значит: $$-(4x-1)=0$$ $$x=0.25$$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $0.25$ — это и есть искомая точка максимума функции $y=(4x-1)\cos{x}-4\sin{x}+7.$
Найдите точку максимума функции $y=(8-x)e^{x+8}.$
Найдем производную данной функции: $$f'(x)=-e^{x+8}+(8-x)e^{x+8}$$ $$f'(x)=e^{x+8}(7-x)$$ Найдем нули производной: $$e^{x+8}(7-x)=0$$ Произведение равно нулю, когда один из множителей равен нулю, но $e^{x+8}$ при любом значении $x$ будет больше нуля. Значит: $$7-x=0$$ $$x=7$$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $7$ — это и есть искомая точка максимума функции $y=(8-x)e^{x+8}.$
Найдите точку максимума функции $y=(11-x)e^{x+11}.$
Найдем производную данной функции: $$f'(x)=-e^{x+11}+(11-x)e^{x+11}$$ $$f'(x)=e^{x+11}(10-x)$$ Найдем нули производной: $$e^{x+11}(10-x)=0$$ Произведение равно нулю, когда один из множителей равен нулю, но $e^{x+11}$ при любом значении $x$ будет больше нуля. Значит: $$10-x=0$$ $$x=10$$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $10$ — это и есть искомая точка максимума функции $y=(11-x)e^{x+11}.$
Найдите наименьшее значение функции $$y=(x-2)^2e^{x-2}$$ на отрезке $[1;4].$
Найдем производную данной функции: $$f'(x)=2(x-2)e^{x-2}+(x-2)^2e^{x-2}$$ $$f'(x)=e^{x-2}(2(x-2)+(x-2)^2)$$ $$f'(x)=e^{x-2}(x-2)(2+x-2)$$ $$f'(x)=e^{x-2}(x-2)x$$ Найдем нули производной: $$e^{x-2}(x-2)x=0$$ $$x_1=0$$ $$x_2=2$$ На отрезке $[1;4]$ лежит только точка $x=2.$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(2;4],$ $f'(x)<0$ на промежутке $[1;2).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $2$ — это точка минимума функции на отрезке $[1;4].$
Найдем значение функции $y=(x-2)^2e^{x-2}$ в данной точке: $$y=(2-2)^2e^{2-2}=0$$
Найдите наименьшее значение функции $$y=(x-15)^2e^{x-15}$$ на отрезке $[13.5;24].$
Найдем производную данной функции: $$f'(x)=2(x-15)e^{x-15}+(x-15)^2e^{x-15}$$ $$f'(x)=e^{x-15}(2(x-15)+(x-15)^2)$$ $$f'(x)=e^{x-15}(x-15)(15+x-15)$$ $$f'(x)=e^{x-15}(x-15)x$$ Найдем нули производной: $$e^{x-15}(x-15)x=0$$ $$x_1=0$$ $$x_2=15$$ На отрезке $[13.5;24]$ лежит только точка $x=15.$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(15;24],$ $f'(x)<0$ на промежутке $[13.5;15).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $15$ — это точка минимума функции на отрезке $[13.5;15].$
Найдем значение функции $y=(x-15)^2e^{x-15}$ в данной точке: $$y=(15-15)^2e^{15-15}=0$$
Найдите точку максимума функции $y=(x^2-10x+10)e^{5-x} .$
Найдем производную данной функции: $$f'(x)=(2x-10)e^{5-x}-(x^2-10x+10)e^{5-x}$$ $$f'(x)=e^{5-x}(-x^2+12x-20)$$ Найдем нули производной: $$e^{5-x}(-x^2+12x-20)=0$$ $$x^2-12x+20=0$$ $$x_1=2$$ $$x_2=10$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(2;10),$ $f'(x)<0$ на промежутках $(-\infty;2)\cup(10;\infty).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $10$ — это точка максимума функции $y=(x^2-10x+10)e^{5-x} .$
Найдите точку максимума функции $y=(5x^2-35x+35)e^{13-x} .$
Найдем производную данной функции: $$f'(x)=(10x-35)e^{13-x}-(5x^2-35x+35)e^{13-x}$$ $$f'(x)=e^{13-x}(-5x^2+45x-70)$$ Найдем нули производной: $$e^{13-x}(-5x^2+45x-70)=0$$ $$x^2-9x+14=0$$ $$x_1=7$$ $$x_2=2$$
С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(2;7),$ $f'(x)<0$ на промежутках $(-\infty;2)\cup(7;\infty).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $7$ — это точка максимума функции $y=(5x^2-35x+35)e^{13-x} .$
Найдите точку минимума функции $y=\frac{2}{3}x^{\frac{3}{2}}-2x+1.$
Найдем производную данной функции: $$f'(x)=\frac{2}{3} \cdot \frac{3}{2}x^{\frac{1}{2}}-2=\sqrt{x}-2$$ Приравняем производную к нулю: $$\sqrt{x}-2=0$$ $$\sqrt{x}=2$$ $$x=4$$
Функция и ее производная определены на интервале $[0;\infty),$ так как квадратный корень из отрицательного числа не извлекается. С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(4;\infty),$ $f'(x)<0$ на промежутке $[0;4).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $4$ — это и есть искомая точка минимума функции $y=\frac{2}{3}x^{\frac{3}{2}}-2x+1.$
Найдите точку минимума функции $y=\frac{1}{3}x^{\frac{3}{2}}-3x+14.$
Найдем производную данной функции: $$f'(x)=\frac{1}{3} \cdot \frac{3}{2}x^{\frac{1}{2}}-3=\frac{1}{2}\sqrt{x}-3$$ Приравняем производную к нулю: $$\frac{1}{2}\sqrt{x}-3=0$$ $$\frac{1}{2}\sqrt{x}=3$$ $$x=36$$
Функция и ее производная определены на интервале $[0;\infty),$ так как квадратный корень из отрицательного числа не извлекается. С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(36;\infty),$ $f'(x)<0$ на промежутке $[0;36).$
На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $36$ — это и есть искомая точка минимума функции $y=\frac{1}{3}x^{\frac{3}{2}}-3x+14.$