ЕГЭ ЕГЭ Карточки КАРТОЧКИ Тесты ТЕСТЫ Обрачат ОБРАЧАТ
1 класс
2 класс
3 класс
4 класс
5 класс
6 класс
7 класс
8 класс
9 класс
ОГЭ
ЕГЭ
Задание #167234
Задание было решено верно
Задание было решено неверно

Найдите точку максимума функции $y=0.5x^2-27x+50\ln{x}+5.$

Аргумент логарифма должен быть положительным: $$x>0$$ Найдем производную данной функции: $$f'(x)=x-27+\frac{50}{x}$$ Приравняем производную к нулю: $$x-27+\frac{50}{x}=0$$ $$x^2-27x+50=0$$ $$x_1=2$$ $$x_2=25$$

С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(0;2)\cup(25;\infty),$ $f'(x)<0$ на промежутке $(2;25).$

На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с положительного на отрицательное в точке $x=2$ — это и есть искомая точка максимума функции $y=0.5x^2-27x+50\ln{x}+5.$

Показать
Очки опыта 20
0 заданий сегодня