Личный кабинет Выйти Войти Регистрация
Уроки
Математика Алгебра Геометрия Физика Всеобщая история Русский язык Английский язык География Биология Обществознание История России ОГЭ
Тренажёры
Математика ЕГЭ Тренажёры для мозга

Разложение многочленов на множители: вынесение общего множителя за скобки

Содержание

    Часто при решении задач и уравнений необходимо упростить многочлен, то есть разложить его на множители. Вынесение общего множителя за скобки — один из способов такого разложения.

    Разложение многочлена на множители — это представление многочлена в виде произведения двух или нескольких многочленов. 

    Вынесение общего множителя за скобки — это преобразование многочлена в произведение с помощью распределительного свойства умножения.

    Формула распределительного свойства умножения представления на рисунке 1:

    вынесение общего множителя за скобки
    Рисунок 1

    Пример 1
    Рассмотрим многочлен:

    $\textcolor{blue}{12a^{2}b}\textcolor{green}{+8b^{2}}$

    Заменим каждый его член на произведение двух множителей так, чтобы у них был один общий. В данном случае берём $\textcolor{orange}{4b}$, так как $4$ — наибольший общий делитель для $8$ и $12$, а общей переменной является только $b$ в первой степени. 

    $\textcolor{blue}{12a^{2}b}\textcolor{green}{+8b^{2}}=\textcolor{orange}{4b}\cdot\textcolor{blue}{3a^{2}}\textcolor{orange}{+4b}\cdot\textcolor{green}{2b}$ 

    На основе распределительного свойства умножения данное выражение можно представить в виде произведения двух множителей, один из которых $\textcolor{orange}{4b}$, а второй — сумма $\textcolor{blue}{3a^{2}}$ и $\textcolor{green}{2b}$. Для этого выносим $\textcolor{orange}{4b}$ за скобки. Получаем выражение:

    $\textcolor{orange}{4b}\cdot\textcolor{blue}{3a^{2}}\textcolor{orange}{+4b}\cdot\textcolor{green}{2b}=\textcolor{orange}{4b}\cdot(\textcolor{blue}{3a^{2}}\textcolor{green}{+2b})$ 

    Таким образом, мы упростили изначальный многочлен, представив его в виде произведения одночлена $\textcolor{orange}{4b}$ и многочлена $(\textcolor{blue}{3a^{2}}\textcolor{green}{+2b})$:

    $\textcolor{blue}{12a^{2}b}\textcolor{green}{+8b^{2}}=\textcolor{orange}{4b}\cdot(\textcolor{blue}{3a^{2}}\textcolor{green}{+2b})$

    Пример 2
    Разложим следующий многочлен на множители тем же способом:

    $\textcolor{blue}{4a^{3}}\cdot(\textcolor{green}{3b}\textcolor{green}{-2})+\textcolor{orange}{5}\cdot(\textcolor{green}{3b}\textcolor{green}{-2})$

    Здесь общий множитель — это выражение в скобках $(\textcolor{green}{3b}\textcolor{green}{-2})$, выносим его за скобки и получаем упрощённое выражение:

    $(\textcolor{green}{3b}\textcolor{green}{-2})\cdot(\textcolor{blue}{4a^{3}}\textcolor{orange}{+5})$

    Пример 3
    Разложим на множители многочлен:

    $\textcolor{orange}{-10}\textcolor{blue}{a^{2}}\textcolor{green}{b^{3}}\textcolor{orange}{-15}\textcolor{blue}{a^{3}}\textcolor{green}{b^{2}}\textcolor{orange}{+20}\textcolor{blue}{a}\textcolor{green}{b^{4}}$

    В многочленах с целыми коэффициентами множитель, выносимый за скобки, выбирают так, чтобы члены множителя, оставшегося в скобках, не содержали общего буквенного множителя, а модули их коэффициентов не имели общих натуральных делителей, кроме $1$.

    В предложенном многочлене следующие модули коэффициентов: $10$, $15$ и $20$. Их общий наибольший делитель — это $5$, поэтому в качестве коэффициента общего множителя берём число $\textcolor{orange}{5}$.

    Также все члены многочлена содержат переменные $\textcolor{blue}{a}$ и $\textcolor{green}{b}$, которые входят в них в разных степенях. За скобки выносятся переменные с наименьшей степенью среди всех членом. Таким образом за скобки выносятся $\textcolor{blue}{a}$ и $\textcolor{green}{b^{2}}$.

    Получаем упрощённый многочлен:

    $\textcolor{orange}{-10}\textcolor{blue}{a^{2}}\textcolor{green}{b^{3}}\textcolor{orange}{-15}\textcolor{blue}{a^{3}}\textcolor{green}{b^{2}}\textcolor{orange}{+20}\textcolor{blue}{a}\textcolor{green}{b^{4}}=\textcolor{orange}{5}\textcolor{blue}{a}\textcolor{green}{b^{2}}\cdot(\textcolor{orange}{-2}\textcolor{blue}{a}\textcolor{green}{b}\textcolor{orange}{-3}\textcolor{blue}{a^{2}}\textcolor{orange}{+4}\textcolor{green}{b^{2}})$

    5
    5
    5Количество опыта, полученного за урок

    Оценить урок

    Спасибо, что помогаете нам стать лучше!

    Комментарии

    Получить ещё подсказку

    Трудности? Воспользуйтесь подсказкой

    Верно! Посмотрите пошаговое решение