Аватар Неизвестный
Личный кабинет Кабинет родителя Кабинет учителя Настройки Выйти Войти Регистрация Подписаться
СОЗДАТЬ
Создать флеш-карточки
ТРЕНАЖЁРЫ
КУРСЫ
КАРТОЧКИ
Подобрать занятие
Подобрать занятие
Подобрать занятие
НАЗНАЧИТЬ

Разложение многочлена на множители способом группировки

Содержание

В этом методе для разложения многочлена на множители используется группировка его членов.

Для способа группировки применяют переместительный или сочетательный законы сложения.

Рисунок 1

Пример 1
Разложим многочлен на множители:

$\textcolor{blue}{x}\textcolor{green}{y}\textcolor{orange}{-4}\textcolor{green}{y}\textcolor{orange}{+2}\textcolor{blue}{x}\textcolor{orange}{-8}$

Сгруппируем его члены так, чтобы слагаемые в каждой группе имели общий множитель:

$(\textcolor{blue}{x}\textcolor{green}{y}\textcolor{orange}{-4}\textcolor{green}{y})\textcolor{orange}{+}(\textcolor{orange}{2}\textcolor{blue}{x}\textcolor{orange}{-8})$

В первой группе общий множитель это $\textcolor{green}{y}$, во второй наибольший общий делитель, то есть $\textcolor{orange}{2}$.

Из первой группы за скобки вынесем $\textcolor{green}{y}$, из второй вынесем $\textcolor{orange}{2}$, получаем:

$(\textcolor{blue}{x}\textcolor{green}{y}\textcolor{orange}{-4}\textcolor{green}{y})\textcolor{orange}{+}(\textcolor{orange}{2}\textcolor{blue}{x}\textcolor{orange}{-8})=\textcolor{green}{y}(\textcolor{blue}{x}\textcolor{orange}{-4})\textcolor{orange}{+2}(\textcolor{blue}{x}\textcolor{orange}{-4})$

Получаем одинаковый множитель в скобках $(\textcolor{blue}{x}\textcolor{orange}{-4})$, который выносим на скобки и получаем окончательный ответ:

$\textcolor{blue}{x}\textcolor{green}{y}\textcolor{orange}{-4}\textcolor{green}{y}\textcolor{orange}{+}\textcolor{orange}{2}\textcolor{blue}{x}\textcolor{orange}{-8}=(\textcolor{blue}{x}\textcolor{orange}{-4})\cdot(\textcolor{green}{y}\textcolor{orange}{+2})$

Сгруппировать — значит при необходимости поменять члены многочлена местами и объединить их в группы, заключая в скобки.

Рисунок 2

Пример 2
Как вы поняли, для метода группировки нужно чётное количество членов. Рассмотрим пример с нечётным количеством членов:

$\textcolor{blue}{x^{2}}\textcolor{orange}{-5}\textcolor{green}{x}\textcolor{orange}{+6}$

Представим член $\textcolor{orange}{5}\textcolor{green}{x}$ в виде суммы $\textcolor{orange}{3}\textcolor{green}{x}$ и $\textcolor{orange}{2}\textcolor{green}{x}$, тогда получаем многочлен с чётным количеством членов:

$\textcolor{blue}{x^{2}}\textcolor{orange}{-5}\textcolor{green}{x}\textcolor{orange}{+6}=\textcolor{blue}{x^{2}}\textcolor{orange}{-}(\textcolor{orange}{3}\textcolor{green}{x}\textcolor{orange}{+2}\textcolor{green}{x})\textcolor{orange}{+6}=\textcolor{blue}{x^{2}}\textcolor{orange}{-3}\textcolor{green}{x}\textcolor{orange}{-2}\textcolor{green}{x}\textcolor{orange}{+6}$

Далее выполняем уже знакомую группировку:

$\textcolor{blue}{x^{2}}\textcolor{orange}{-3}\textcolor{green}{x}\textcolor{orange}{-2}\textcolor{green}{x}\textcolor{orange}{+6}=(\textcolor{blue}{x^{2}}\textcolor{orange}{-3}\textcolor{green}{x})\textcolor{orange}{-}(\textcolor{orange}{2}\textcolor{green}{x}\textcolor{orange}{-6})=\textcolor{green}{x}(\textcolor{green}{x}\textcolor{orange}{-3})\textcolor{orange}{-2}(\textcolor{green}{x}\textcolor{orange}{-3})=(\textcolor{green}{x}\textcolor{orange}{-3})(\textcolor{green}{x}\textcolor{orange}{-2})$

Будьте внимательны со знаками!
Конечный ответ:

$\textcolor{blue}{x^{2}}\textcolor{orange}{-5}\textcolor{green}{x}\textcolor{orange}{+6}=(\textcolor{green}{x}\textcolor{orange}{-3})(\textcolor{green}{x}\textcolor{orange}{-2})$

5
5
1
5Количество опыта, полученного за урок

Оценить урок

Отзыв отправлен. Спасибо, что помогаете нам стать лучше!

Комментарии

Получить ещё подсказку

Трудности? Воспользуйтесь подсказкой

Верно! Посмотрите пошаговое решение

НАЗНАЧИТЬ