Перпендикулярные прямые
Содержание
Разберемся, что такое перпендикулярные прямые. Для этого начертим две произвольно пересекающиеся прямые $a$ и $b$ под углом $\alpha$. Вообще, как мы знаем, две прямые при пересечении образуют четыре угла. Значит, любой из оставшихся углов будет образовывать с углом $\alpha$ либо смежный угол, либо вертикальный.
Из этого мы можем сделать вывод, что если при пересечении двух прямых один угол прямой, то остальные углы также являются прямыми. Перед вами — частный случай пересечения прямых, которые в данном контексте будут называться перпендикулярными.
Определение перпендикулярных прямых
Итак, какие прямые называются перпендикулярными:
Перпендикулярные прямые — две прямые, пересекающиеся под прямым углом.
Чтобы строго доказать, что каждый из образуемых углов будет прямым, разметим на нашем чертеже оставшиеся углы — углы $\beta$, $\gamma$ и $\delta$. Применим к ним доказанные нами ранее теоремы о вертикальных и смежных углах, при условии, что угол $\alpha$ задан определением и равняется $90^{\circ}$.
1. Угол $\beta$ — смежный с углом $\alpha$. Известно, что сумма смежных углов равняется $180^{\circ}$. Если $\alpha=90^{\circ}$, то $\beta=180^{\circ}-90^{\circ}=90^{\circ}$.
2. Вертикальные углы равны. Угол $\beta$ вертикален углу $\delta$, следовательно угол $\delta$ так же, как и $\beta$, равняется $90^{\circ}$. Аналогичное применимо и к другой паре вертикальных углов — $\alpha$ и $\gamma$.
Итого: $\alpha=90^{\circ}$, $\beta=90^{\circ}$, $\gamma=90^{\circ}$, $\delta=90^{\circ}$. Все углы — прямые.
Перпендикуляр к прямой
Пусть на плоскости лежат прямая $a$ и точка $A$. Так, из точки $A$ к прямой $a$ можно опустить перпендикуляр.
Он представляет собой отрезок прямой, перпендикулярной к заданной, с концом в точке пересечения. Отметим точку пересечения как $B$. Получившийся отрезок $AB$ и есть перпендикуляр к прямой $a$. Однако если говорить грамотно, точка пересечения обычно называется основанием перпендикуляра.
Перпендикулярность в геометрической нотации обозначается значком «$\perp$». К примеру, если прямые $a$ и $b$ перпендикулярны, кратко записывается это следующим образом: $a\perp{b}$. В случае отрезка-перпендикуляра $AB$, что мы разобрали выше, можно было бы записать: $AB\perp{a}$.
Легко запомнить!
Значок визуально напоминает мини-версию чертежа перпендикуляра к прямой.
Единственность перпендикуляра
Важно понимать: одна точка — один перпендикуляр. Вы не можете провести через одну точку прямой более одного перпендикуляра к ней. Это — теорема о единственности перпендикуляра, и формально она звучит так:
Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну.
Далее мы воспользуемся крайне сподручным математическим инструментом — доказательством от противного. Подобный вид доказательства заключается в отрицании тезиса доказательства. В математике вам еще не раз придется прибегать к данному способу заключения истинности утверждений.
Предположим, что это неправда и через одну точку прямой проходят сразу два перпендикуляра. На данном чертеже «основной» перпендикуляр отмечен прямой $b$, «альтернативный» — прямой $c$. Угол $(ab)$ по определению прямой. Но по определению прямым является и угол $(ac)$.
Мы знаем, что от прямой можно отложить только один угол заданной градусной меры, а у нас их два. Явно возникшее противоречие сообщает о единственности перпендикуляра к точке прямой.
Осторожно, строительные работы
Решили вы, значит, прикрепить навесную полку к стене. Установка прошла прекрасно, только… Кажется, висит полка криво. Или нет? Своего рода иллюзия обмана? Глаз может подвести, необходимо достать-таки объективное доказательство. Поможет вам решить спорный вопрос бесхитростное приспособление, применяемое строителями еще со времен Древнего Египта. А то и раньше. Называется оно отвес.


Отвес представляет собой грузик, прикрепленный к гибкой нити. Грузик хоть и небольшой, но увесистый, а еще имеет специальную форму заостренного конуса, что позволяет нитке, натянутой грузиком, показывать идеальную вертикальную линию. Если прикрепить отвес к ровному потолку, по углу, образованному прямыми, будет понятно, действительно ли полка весит криво. Прямой угол — «прямая» полка.
Интересный поворот в истории про перпендикулярные прямые: древние римляне отвес нарекли словом ‘perpendiculum’ — от глагольной формы ‘perpendō’, в переводе примерно — «я точно измеряю». Так что существительное «перпендикуляр» и его производные восходят к тому, как Populus Romanus называли отвес.
Связь между параллельностью и перпендикулярностью
Если наша полка в итоге висит идеально ровно по отношению к потолку, то с точки зрения планиметрии прямые, образованные полкой и потолком, будут называться параллельными. Параллельный — то есть непересекающийся: иными словами, такие прямые лежат в одной плоскости и при этом не пересекаются. Подробнее свойства параллельности мы разберем в курсе геометрии далее.
Пока просто дадим определение:
Параллельные прямые — прямые, что находятся в одной плоскости и не имеют точек пересечения.
Разберем ситуацию, когда помимо двух параллельных прямых имеется перпендикулярная к одной из них. Начертим параллельные прямые $a$ и $b$. К прямой $a$ проведем перпендикуляр $c$ и достроим его до прямой $b$.
Если $c$ перпендикулярна к $a$, то она также перпендикулярна и к $b$, при условии, что $a$ и $b$ — параллельны. Доказать это можно классическим наложением прямых или, опять же, через метод доказательства от противного.
Подумайте, как применить доказательство от противного, чтобы прийти к выводу, что перпендикулярность и параллельность связаны друг с другом. Делитесь своими идеями в комментариях под уроком!
Связь между параллельностью и перпендикулярностью записать можно и «в обратном порядке»: если две (или более, — количество прямых может быть бесконечным) прямые перпендикулярны к третьей, то эти две прямые — параллельны.
Хотите оставить комментарий?