ЕГЭ
Назад
Библиотека флеш-карточек Создать флеш-карточки
Библиотека тестов Создать тест
Математика Английский язык Тренажёры для мозга ЕГЭ Русский язык Чтение Биология Всеобщая история Окружающий мир
Классы
Темы
Математика Алгебра Геометрия ОГЭ Физика География Биология Химия Всеобщая история История России Обществознание Русский язык Литература ЕГЭ Английский язык
Подобрать занятие
Классы
Темы

8. Производная и первообразная: все задания

1. Задание #163535
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−14;9).$ Найдите количество точек максимума функции $f(x),$ принадлежащих отрезку $[−6;8].$

Точка является точкой максимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с положительного на отрицательный. Таких точек на указанном отрезке $2$: $x_1=-1,$ $x_2=6.$

Показать
Очки опыта 20
2. Задание #163536
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−12;11).$ Найдите количество точек максимума функции $f(x),$ принадлежащих отрезку $[−5;5].$

Точка является точкой максимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с положительного на отрицательный. Такая точка на указанном отрезке $1$: $x=-1.$

Показать
Очки опыта 20
3. Задание #163537
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−13;10).$ Найдите количество точек максимума функции $f(x),$ принадлежащих отрезку $[−4;7].$

Точка является точкой максимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с положительного на отрицательный. Таких точек на указанном отрезке $2$: $x_1=-2,$ $x_2=5.$

Показать
Очки опыта 20
4. Задание #163538
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−4;20).$ Найдите количество точек максимума функции $f(x),$ принадлежащих отрезку $[-3;18].$

Точка является точкой максимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с положительного на отрицательный. Таких точек на указанном отрезке $3$: $x_1=-2,$ $x_2=5,$ $x_3=11.$

Показать
Очки опыта 20
5. Задание #163540
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−6;8).$ Найдите количество точек максимума функции $f(x),$ принадлежащих отрезку $[−3;7].$

Точка является точкой максимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с положительного на отрицательный. Такая точка на указанном отрезке $1$: $x=2.$

Показать
Очки опыта 20
6. Задание #163541
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−14;9).$ Найдите количество точек минимума функции $f(x),$ принадлежащих отрезку $[−6;8].$

Точка является точкой минимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с отрицательного на положительный. Таких точек на указанном отрезке $2$: $x_1=-3,$ $x_2=4.$

Показать
Очки опыта 20
7. Задание #163542
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−12;11).$ Найдите количество точек минимума функции $f(x),$ принадлежащих отрезку $[−11;9].$

Точка является точкой минимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с отрицательного на положительный. Таких точек на указанном отрезке $2$: $x_1=-7,$ $x_2=6.$

Показать
Очки опыта 20
8. Задание #163544
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−13;10).$ Найдите количество точек минимума функции $f(x),$ принадлежащих отрезку $[−12;8].$

Точка является точкой минимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с отрицательного на положительный. Таких точек на указанном отрезке $3$: $x_1=-6,$ $x_2=2,$ $x_3=7.$

Показать
Очки опыта 20
9. Задание #163545
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−4;20).$ Найдите количество точек минимума функции $f(x),$ принадлежащих отрезку $[0;18].$

Точка является точкой минимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с отрицательного на положительный. Таких точек на указанном отрезке $3$: $x_1=3,$ $x_2=8,$ $x_3=15.$

Показать
Очки опыта 20
10. Задание #163546
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−6;8).$ Найдите количество точек минимума функции $f(x),$ принадлежащих отрезку $[−3;4].$

Точка является точкой минимума в том случае, когда производная функции в ней равна нулю и при переходе через эту точку производная меняет знак с отрицательного на положительный. Такая точка на указанном отрезке $1$: $x=-2.$

Показать
Очки опыта 20
11. Задание #163548
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−6;5).$ В какой точке отрезка $[−5;4]$ функция $f(x)$ принимает наибольшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[−5;4].$ На нем производная функции $f(x)$ сначала положительна, затем отрицательна. Значит, функция $f(x)$ достигает своего максимума в точке перехода производной в отрицательную полуось. Значит, наибольшее значение функции $f(x)$ достигается в точке $-1.$

Показать
Очки опыта 20
12. Задание #163549
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−1;10).$ В какой точке отрезка $[0;4]$ функция $f(x)$ принимает наибольшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[0;4].$ На нем производная функции $f(x)$ сначала положительна, затем отрицательна. Значит, функция $f(x)$ достигает своего максимума в точке перехода производной в отрицательную полуось. Значит, наибольшее значение функции $f(x)$ достигается в точке $3.$

Показать
Очки опыта 20
13. Задание #163550
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−3;11).$ В какой точке отрезка $[-2;3]$ функция $f(x)$ принимает наибольшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[-2;3].$ На нем производная функции $f(x)$ сначала положительна, затем отрицательна. Значит, функция $f(x)$ достигает своего максимума в точке перехода производной в отрицательную полуось. Значит, наибольшее значение функции $f(x)$ достигается в точке $2.$

Показать
Очки опыта 20
14. Задание #163551
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−8;4).$ В какой точке отрезка $[-7;3]$ функция $f(x)$ принимает наибольшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[-7;3].$ На нем производная функции $f(x)$ сначала положительна, затем отрицательна. Значит, функция $f(x)$ достигает своего максимума в точке перехода производной в отрицательную полуось. Значит, наибольшее значение функции $f(x)$ достигается в точке $-1.$

Показать
Очки опыта 20
15. Задание #163553
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−2;11).$ В какой точке отрезка $[4;10]$ функция $f(x)$ принимает наибольшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[4;10].$ На нем производная функции $f(x)$ положительна. Значит, функция $f(x)$ на всем промежутке отрезка возрастает. Наибольшее значение функции $f(x)$ достигается в точке $10.$

Показать
Очки опыта 20
16. Задание #163554
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−6;5).$ В какой точке отрезка $[0;4]$ функция $f(x)$ принимает наименьшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[0;4].$ На нем производная функции $f(x)$ отрицательна. Значит, функция $f(x)$ на всем промежутке отрезка убывает. Наименьшее значение функции $f(x)$ достигается в точке $4.$

Показать
Очки опыта 20
17. Задание #163555
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−3;11).$ В какой точке отрезка $[3;10]$ функция $f(x)$ принимает наименьшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[3;10].$ На нем производная функции $f(x)$ сначала отрицательна, затем положительна. Значит, функция $f(x)$ достигает своего минимума в точке перехода производной в положительную полуось. Наименьшее значение функции $f(x)$ достигается в точке $4.$

Показать
Очки опыта 20
18. Задание #163556
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−3;11).$ В какой точке отрезка $[4;10]$ функция $f(x)$ принимает наименьшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[4;10].$ На нем производная функции $f(x)$ сначала отрицательна, затем положительна. Значит, функция $f(x)$ достигает своего минимума в точке перехода производной в положительную полуось. Наименьшее значение функции $f(x)$ достигается в точке $8.$

Показать
Очки опыта 20
19. Задание #163557
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−2;11).$ В какой точке отрезка $[-1;10]$ функция $f(x)$ принимает наименьшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[-1;10].$ На нем производная функции $f(x)$ сначала отрицательна, затем положительна. Значит, функция $f(x)$ достигает своего минимума в точке перехода производной в положительную полуось. Наименьшее значение функции $f(x)$ достигается в точке $3.$

Показать
Очки опыта 20
20. Задание #163558
Задание было решено верно
Задание было решено неверно

На рисунке изображен график $y=f'(x)$ — производной функции $f(x),$ определенной на интервале $(−8;4).$ В какой точке отрезка $[0;3]$ функция $f(x)$ принимает наименьшее значение?

Если производная положительна, то функция возрастает, если отрицательна — убывает. Рассмотрим отрезок $[0;3].$ На нем производная функции $f(x)$ отрицательна. Значит, функция $f(x)$ на всем промежутке отрезка убывает. Наименьшее значение функции $f(x)$ достигается в точке $3.$

Показать
Очки опыта 20
Получить ещё подсказку

Трудности? Воспользуйтесь подсказкой

Верно! Посмотрите пошаговое решение