Равнобедренный треугольник. Свойства равнобедренного треугольника
Итак, равнобедренный треугольник. Начнем немного издалека. Наиболее знаменательным (и, к слову, крупнейшим!) древнеегипетским архитектурным сооружением является Пирамида Хеопса. Найти ее любознательный путешественник может в пригороде Каира — современной столицы Египта.
Даже несмотря на внушительный возраст — без малого, четыре с половиной тысяч лет, — этот памятник цивилизации пережил все возможные злоключения и единственным из Семи чудес света сохранился до наших дней. Что сказать: древние египтяне умели строить «по ГОСТу».
Равнобедренный треугольник: определение
Однако мы не о строительстве. Если присмотреться к древнеегипетским пирамидам как прежде всего к геометрическим фигурам, мы заметим, что грани пирамиды представляют собой треугольники. Довольно интересной формы.
Обратите внимание на схематичное изображение Пирамиды Хеопса в поперечном разрезе. В треугольнике подобном гранями пирамид Древнего Египта боковые стороны являются равными по величине. Это — частный случай геометрии треугольников, который мы с вами сегодня и будем разбирать.
Равнобедренный треугольник — треугольник, в котором две стороны равны между собой по величине.
Значит, равнобедренный треугольник имеет равные «бедра» — боковые стороны при основании. На чертеже такой треугольник изображен и размечен отдельно. Посмотрите: в $\bigtriangleup{ABC}$ имеется основание $AB$ и боковые стороны $BC$ и $CA$, при этом $BC=CA$.
Рисуйте правильно!
В случае с треугольником с произвольно заданными сторонами и углами особой роли не играет, как вы разместите его на чертеже. Можно под углом, можно основанием параллельно к краю листа.
Равнобедренный треугольник? Наоборот: крайне важно располагать его по принципу грани древнеегипетской пирамиды — основанием к «земле», то есть к низу, не под углом.
Задача. Дан равнобедренный треугольник $\bigtriangleup{ABC}$. Основание $AB$ больше боковой стороны на $2~см$, но меньше суммы боковых сторон на $3~см$. Найдите стороны треугольника.
Решение
Обозначим боковую сторону треугольника как $y$, а основание как $x$. Согласно условию, можно записать два следующих уравнения:
$$x=y+2,\\x=2y-3$$
Подставим во второе уравнение вместо $x$ правую часть первого уравнения и вычислим значение боковой стороны: $2+y=2y-3.$ Откуда получаем значение $y$ равное $5$. В равнобедренном треугольнике боковые стороны равны, поэтому значение второй стороны также будет равняться $5$.
Далее подставляем полученное значение в первое уравнение и находим основание: $$x=y+2=7$$
Ответ: $5, 5, 7.$
Свойства равнобедренного треугольника
Теорема равнобедренного треугольника. В равнобедренном треугольнике углы при основании равны.
Доказательство. Дан равнобедренный треугольник $\bigtriangleup{ABC}$ с основанием $AB$. По определению $BC=CA$. Проведем в треугольнике биссектрису $CD$ к основанию и рассмотрим треугольники $\bigtriangleup{ADC}$ и $\bigtriangleup{DBC}$.
Они равны по первому признаку равенства треугольников, то есть по двум сторонам и углу между ними: $BC=CA,$ $\angle{DCA}=\angle{BCD},$ биссектриса $CD$ — общая сторона. Если треугольники равны, то против равных сторон в них будут лежать равные углы. Откуда делаем вывод, что $\angle{CAB}=\angle{ABC}$. Теорема равнобедренного треугольника доказана.
Мы помним, что периметр — сумма всех сторон треугольника. Равнобедренный треугольник — равные стороны при основании, так что для случая с таким треугольником формулу периметра можно немного «подлатать»: $P=2a+b$, где $a$ — длина боковой стороны, $b$ — длина основания.
Медианы, биссектрисы, высоты и равнобедренный треугольник
На чертеже равнобедренного треугольника выше внимание привлекает вот что: биссектриса равнобедренного треугольника как будто бы является одновременно и высотой в треугольнике, и медианой.
На самом деле нам не кажется. Одно из главных свойств равнобедренных треугольников заключается в том, что проводя, к примеру, медиану, вы получаете в то же самое время высоту и биссектрису равнобедренного треугольника. И это все один отрезок. Сформируем на основе наших предположений теорему и докажем ее.
Теорема о медиане, биссектрисе и высоте равнобедренного треугольника. В равнобедренном треугольнике медиана, проведенная к основанию, является и высотой, и биссектрисой.
Доказательство
Дан равнобедренный треугольник $\bigtriangleup{ABC}$. К основанию $AB$ проведена медиана $CD$. Треугольники $\bigtriangleup{ADC}$ и $\bigtriangleup{DBC}$ будут равны по первому признаку треугольников: $\angle{CAB}$ и $\angle{ABC}$ равны по теореме об углах равнобедренного треугольника, стороны $BC$ и $CA$ равны по определению равнобедренного треугольника, $AD=DB$ по определению медианы.
Из равенства треугольников следует равенство углов $\angle{ACD}$ и $\angle{BCD}$. Тогда $CD$ — биссектриса. Углы $\angle{ADC}$ и $\angle{BDC}$ равны из доказанного равенства треугольников $\bigtriangleup{ADC}$ и $\bigtriangleup{DBC}$. Эти углы являются смежными.
Раз сумма смежных углов равна $180^{\circ}$ и углы при этом равны, то они оба равняются $90^{\circ}$. Из этого следует, что $CD$ — высота. Теорема доказана.
Совет!
Eсли проводите в равнобедренном треугольнике, скажем, медиану, сразу отмечайте на чертеже свойство высоты и биссектрисы.
Или в любом другом порядке, в зависимости от того, что за отрезок требуется в условии. Это поможет постоянно иметь перед глазами свойства равнобедренного треугольника, что значительно облегчит доказательство утверждения или решение задачи.
Задача #1
На рисунке изображен $\bigtriangleup{ABC}$, где $BC=CA$. Известно, что $\angle{1}=130^{\circ}$. Чему равняется значение угла $\angle{2}$?
Дано:
$\bigtriangleup{ABC}$
$BC=CA$
$\angle{1}=130^{\circ}$
Найти:
$\angle{2}~—~?$
Решение
Рассмотрим $\bigtriangleup{ABC}$. В нем по условию боковые стороны $BC$ и $CA$ равны. Следовательно $\bigtriangleup{ABC}$ — равнобедренный треугольник, по определению равнобедренного треугольника.
Угол $\angle{1}$ — смежный угол с $\angle{ABC}$. Сумма смежных углов равняется $180^{\circ}$, откуда получаем значение $\angle{ABC}=180^{\circ}-130^{\circ}=50^{\circ}.$ По теореме о равнобедренном треугольнике, углы при основании равнобедренных треугольников равны. Тогда $\angle{ABC}=\angle{CAB}$.
Угол $\angle{2}$ — вертикальный угол с $\angle{CAB}$. По теореме о равенстве вертикальных углов получаем, что $\angle{CAB}=\angle{2}=\angle{ABC}=50^{\circ}.$
Ответ: $50^{\circ}.$
Равнобедренный треугольник: задача для самостоятельного решения
Попробуйте решить задачу самостоятельно. В случае сложностей мы поможем: готовое решение скрыто ниже.
В равнобедренном треугольнике $\bigtriangleup{ABC}$ с основанием $AB$ проведена медиана $CD$. Найдите длину медианы $CD$, если периметр треугольнике $\bigtriangleup{ABC}$ равен $32~см$, а периметр треугольника $\bigtriangleup{ADC}$ равен $24~см$.
Показать решение
Скрыть решение
Дано:
$\bigtriangleup{ABC}$
$P_{\bigtriangleup{ABC}}=32~см$
$P_{\bigtriangleup{ADC}}=24~см$
Найти:
$CD~—~?$
Решение
Для удобства отметим боковые стороны $\bigtriangleup{ABC}$ как $a$, медиану $CD$ как $x$, основание как $b$. По определению медианы $AD=DB=0,5b$. Тогда мы можем записать два следующих уравнения: $$2a+b=32\\a+0,5b+x=24.$$ Умножим второе уравнение на $2$ и получим: $$2a+b+2x=48.$$ Подставим значение $2a+b$ во второе уравнение и найдем $x$: $$2x+32=48.$$ Откуда получаем $x=8.$
Ответ: $CD=8~см.$
Хотите оставить комментарий?
Войти