ЕГЭ ЕГЭ Карточки КАРТОЧКИ Тесты ТЕСТЫ Обрачат ОБРАЧАТ
1 класс
2 класс
3 класс
4 класс
5 класс
6 класс
7 класс
8 класс
9 класс
ОГЭ
ЕГЭ
Задание #167423
Задание было решено верно
Задание было решено неверно

Найдите точку минимума функции $y=x\sqrt{x}-3x+1.$

Представим произведение $x\sqrt{x}$ в виде степени: $x^{\frac{3}{2}}.$ Найдем производную данной функции: $$f'(x)=\frac{3}{2}x^{\frac{1}{2}}-3$$ Приравняем производную к нулю: $$\frac{3}{2}\sqrt{x}-3=0$$ $$\sqrt{x}=2$$ $$x=4$$

Функция и ее производная определены на интервале $[0;\infty),$ так как квадратный корень из отрицательного числа не извлекается. С помощью метода интервалов найдем промежутки положительных и отрицательных значений производной: $f'(x)>0$ на промежутке $(4;\infty),$ $f'(x)<0$ на промежутке $[0;4).$

На промежутках возрастания функции ее производная положительна, на промежутках убывания — отрицательна. Значение производной меняется с отрицательного на положительное в точке $x=4$ — это и есть искомая точка минимума функции $y=x\sqrt{x}-3x+1.$

Показать
Очки опыта 20
0 заданий сегодня