ЕГЭ
Назад
Библиотека флеш-карточек Создать флеш-карточки
Библиотека тестов Создать тест
Математика Английский язык Тренажёры для мозга ЕГЭ Русский язык Чтение Биология Всеобщая история Окружающий мир
Классы
Темы
Математика Алгебра Геометрия Жизненные навыки ОГЭ Физика География Химия Биология Всеобщая история История России Обществознание Русский язык Литература ЕГЭ Английский язык
Подобрать занятие
Классы
Темы
Задание #195728
Задание было решено верно
Задание было решено неверно

Найдите все значения параметра $a$, при каждом из которых уравнение$$a|x+1|+(1-a)|x-1|+2=0$$ имеет ровно два различных корня.

Случай 1: $x<-1$: $$-a(x+1)-(1-a)(x-1)+2=0$$ $$-x-2a+3=0$$ $$x=-2a+3$$ $$-2a+3<-1\ \Rightarrow \ a>2$$

Случай 2: $-1\leq x\leq1$: $$a(x+1)-(1-a)(x-1)+2=0$$ $$(2a-1)x+3=0$$$$x=\frac{3}{1-2a}$$ $$\begin{cases} \dfrac{3}{1-2a}\geq-1 \\ \dfrac{3}{1-2a}\leq1 \end{cases}$$ $$a\leq-1 \ или \ a\geq2$$

Случай 3: $x>1$:
$$a(x+1)+(1-a)(x-1)+2=0$$ $$x+2a+1=0$$ $$x=-2a-1$$$$-2a-1>1\ \Rightarrow\ a<-1$$

Анализ количества решений:

    • При $a<-1$: решения из случаев 2 и 3
    • При $a>2$: решения из случаев 1 и 2
    • При $-1\leq a\leq2$: только одно решение или нет решений

    Итоговый ответ:
    Уравнение имеет ровно два различных корня при $a<-1$ или $a>2$.

      Ответ: $a\in(-\infty,-1)\cup(2,+\infty)$

      Показать
      Очки опыта 20
      0 заданий сегодня