ЕГЭ ЕГЭ Карточки КАРТОЧКИ Тесты ТЕСТЫ Обрачат ОБРАЧАТ
1 класс
2 класс
3 класс
4 класс
5 класс
6 класс
7 класс
8 класс
9 класс
ОГЭ
ЕГЭ
Задание #167477
Задание было решено верно
Задание было решено неверно

Найдите наименьшее значение функции $$y=7 \sin{x}-8x+9$$ на отрезке $[-\frac{3\pi}{2};0].$

Найдем производную данной функции: $$f'(x)=7\cos{x}-8$$ Найдем нули функции на отрезке $[-\frac{3\pi}{2};0]$: $$7\cos{x}-8=0$$ $$\cos{x}=\frac{8}{7}$$ Так как косинус может принимать значения от $-1$ до $1,$ корней у производной данной функции не будет, значит, функция будет всегда возрастающей или всегда убывающей.

Определим знак производной, подставив вместо $x$ любое значение. При любом значении $x$ производная будет отрицательной, значит, функция будет убывать на всем промежутке $[-\frac{3\pi}{2};0].$ Наименьшее значение функция будет принимать в точке $0.$

Найдем значение функции $y=7 \sin{x}-8x+9$ в данной точке: $$y=7 \sin{0}-8 \cdot 0+9=9$$

Показать
Очки опыта 20
0 заданий сегодня