Аватар Неизвестный
Личный кабинет Кабинет родителя Кабинет учителя Настройки Выйти Войти Регистрация Родителю Подписка
КАРТОЧКИ
ТЕСТЫ
ТРЕНАЖЁРЫ
КУРСЫ
Классы
Темы
Подобрать занятие
Подобрать занятие
Классы
Темы

1. Планиметрия: #161108

Задание #161108
Задание было решено верно
Задание было решено неверно

Острый угол $B$ прямоугольного треугольника равен $73^{\circ}.$ Найдите угол между биссектрисой $CD$ и медианой $CM,$ проведёнными из вершины прямого угла. Ответ дайте в градусах.

Сумма углов треугольника равна $180$ градусам, найдем угол $A$:$$180-90-73=17$$

Медиана, проведенная из прямого угла равна половине гипотенузы, значит треугольник $ACM$ — равнобедренный, значит угол $MAC$ равен углу $ACM.$

Найдем искомый угол $MCD.$ Для этого из угла $ACD$ (который равен $45$ градусам, так как $CD$ — биссектриса) вычтем угол $ACM$: $$45-17=28$$

Показать ответ