Личный кабинет Выйти Войти Регистрация
Уроки
Математика Алгебра Геометрия Физика Всеобщая история Русский язык Английский язык География Биология Обществознание История России ОГЭ
Тренажёры
Математика ЕГЭ Тренажёры для мозга

Магнитное поле прямого тока. Линии магнитного поля. Правило буравчика и правой руки

Содержание

    Магнитное поле возникает, если у нас есть движущиеся электрические заряды. Но мы не можем увидеть или почувствовать его с помощью наших органов чувств.

    Физика может дать нам такую удивительную возможность — увидеть магнитное поле. Также мы сможем определить его форму, как и где оно располагается, каким-то образом охарактеризовать его.

    Для этого нам будут нужны не какие-то сложные приборы, а всего лишь железные опилки. На данном уроке мы рассмотрим их применение и сделаем определенные выводы о магнитном поле прямого тока.

    Использование железных опилок для обнаружения магнитного поля

    Магнитное поле возникает вокруг проводников, по которым течет ток. Чтобы его обнаружить, есть множество способов. Некоторые из них мы рассматривали в прошлом уроке.

    Теперь мы рассмотрим еще один способ — использование мелких железных опилок.

    Почему для изучения магнитного поля можно использовать железные опилки? Ответ очень прост. Эти маленькие кусочки железа, оказавшись в магнитном поле, намагничиваются. Так они становятся маленькими магнитным стрелками

    Опыт Эрстеда уже показал нам, что магнитная стрелка отклоняется от своего первоначального положения при наличии рядом проводника, по которому течет ток. Теперь у нас будет не одна такая стрелка, а большое их множество. Мы же пронаблюдаем за тем, как ось каждой такой стрелки будет ориентироваться под действием сил магнитного поля.

    Определение формы магнитного поля

    Как же «выглядит» магнитное поле? Давайте проведем простой опыт (рисунок 1).

    У нас есть прямой проводник с током. Сделаем в листе картона отверстие и проденем через него наш проводник. На картон насыпем тонкий слой железных опилок и включим ток.

    Что же мы увидим? Как расположатся железные опилки в магнитном поле прямого тока?

    Рисунок 1. Расположение железных опилок в магнитном поле прямого тока

    Под действием магнитного поля опилки принимают интересное положение. Они теперь не беспорядочно лежат на листе картона. Теперь они располагаются вокруг проводника по концентрическим окружностям.

    Линии магнитного поля

    Чтобы описать магнитное поле и созданные им окружности из железных опилок, мы введем новое определение — магнитные линии.

    Магнитные линии магнитного поля — это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок.

    Что означает это определение? Соединим опилки, образовавшие одну из окружностей, воображаемой линией. Так мы получим окружность, в центре который находится проводник (рисунок 2).

    Рисунок 2. Магнитные линии магнитного поля прямого тока

    Обратите внимание, что стрелки не только выстраиваются вдоль этих линий. Еще они ориентируются все в одном направлении по этой окружности. Для того, чтобы проще было это оценить, рядом с проводником можно разместить обычные магнитные стрелки, как на рисунке 2.

    Они располагаются на линии магнитного поля, указывая одним своим полюсом в одну сторону. Здесь мы не говорим, что они указывают направо или налево. Они разворачиваются одним полюсом как бы в одном направлении движения по окружности.

    Направление магнитных линий и форма магнитного поля

    Получается, что использование опилок дало нам две новые характеристики магнитного поля: мы видим не только его форму с помощью магнитных линий, но и замечаем, что сами линии имеют определенное направление.

    Итак, мы можем сделать следующие выводы:

    Магнитные линии магнитного поля тока представляют собой замкнутые кривые (концентрические окружности в случае магнитного поля прямого тока), охватывающие проводник.

    Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.

    Связь направлений магнитных линий и направления электрического тока

    Магнитные линии дают нам возможность изобразить магнитное поле графически. 

    На каком расстоянии от проводника мы можем нарисовать его магнитные линии? Ответ прост — для графического изображения мы можем использовать удобный для нас масштаб. 

    Магнитное поле существует во всех точках пространства, окружающего проводник с током. Значит, мы можем правомерно провести магнитную линию через любую точку.

    Хорошо, но как определить направление магнитных линий? Опыты показывают следующее:

    Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике.

    Так как магнитные линии лежат в плоскости, перпендикулярной проводнику с током, на чертежах принято изображать сечение проводника (проводник в разрезе). Направление тока при этом условно обозначается крестиком, если ток направлен от нас, и точкой, если ток направлен на нас (рисунок 3).

    Рисунок 3. Обозначения направления тока

    Взгляните на рисунок 4, а. Ток течет вниз по проводнику. Магнитные стрелки устанавливаются вдоль магнитных линий. Их оси ориентируется таким образом, как показано на рисунке.

    Рисунок 4. Направление магнитных линий при движении тока вниз/от нас

    Графическое изображение такого магнитного поля представлено на рисунке 4, б. Проводник с током расположен перпендикулярно плоскости чертежа, как будто мы смотрим на него сверху, а не сбоку. Направление тока мы обозначили крестиком на самом проводнике (от нас), и указали направление магнитных линий (куда указывают северные полюса магнитных стрелок.

    Теперь сделаем так, чтобы ток шел не вниз, а вверх. Что мы увидим? Магнитные стрелки снова расположились вдоль окружности, но ориентация их осей изменилась (рисунок 5, а). Теперь они развернулись на $180 \degree$ по сравнению с первой ситуацией, где ток шел вниз по проводнику.

    Рисунок 5. Направление магнитных линий при движении тока вверх/к нам

    На рисунке 5, б показано графическое изображение такого поля. Тот факт, что ток направлен к нам, условно обозначен точкой на проводнике. Направление магнитных линий поменялось на противоположное.

    Такой простой опыт подтвердил нам тот факт, что направление магнитных линий связано с направлением тока.

    Правило буравчика и правило правой руки

    Можно запомнить, как соотносятся направление тока в проводнике и направление магнитных линий, а можно воспользоваться простым способом — правилом буравчика.

    Если правой рукой вкручивать буравчик (винт, штопор) острием по направлению тока, то ваш большой палец будет поворачиваться по направлению магнитных линий.

    Может вам покажется более удобной для использования другая интерпретация этого мнемонического правила — правило правой руки (рисунок 6).

    Если обхватить правой рукой прямой проводник с током с отставленным большим пальцем так, чтобы он совпадал с направлением тока, то ваши четыре пальца покажут направление магнитных линий.

    Рисунок 6. Правило правой руки для прямого проводника с током

    Упражнения

    Упражнение №1

    Каким полюсом повернется к наблюдателю магнитная стрелка, если ток в проводнике направлен от A к B (рисунок 7)? Изменится ли ответ, если стрелку поместить над проводником?

    Рисунок 7. Магнитная стрелка, расположенная под проводником

    Пользуясь полученными знаниями, мы можем сказать, что магнитная стрелка повернется к нам южным полюсом (рисунок 8, а).

    Как мы это определили? Если нарисовать чертеж (рисунок 8, б) точкой A к нам, то ток будет идти от нас. Так мы можем, используя готовые результаты опытов, приведенные в данном уроке выше, определить направление магнитных линий поля. Магнитная стрелка повернется северным полюсом по направлению этих линий, т. е. от нас.

    Пользуясь правилом правой руки, мы получим тот же результат: если большой палец будет указывать направление тока, то четыре пальца укажут направление магнитных линий.

    Рисунок 6. Ориентация магнитной стрелки в данном магнитном поле прямого тока

    Если же мы поместим проводник под магнитной стрелкой, то ее положение поменяется. Она повернется к нам северным полюсом, потому что в этой точке магнитные линии будут направлены так же к нам.

    Упражнение №2

    В стене расположен (замурован) прямой электрический провод. Как найти место нахождения провода и направление тока в нем, не вскрывая стену?

    Мы можем обнаружить такой провод с помощью магнитной стрелки на подставке или обычного компаса. Передвигая компас вдоль стены (и при этом не поворачивая его), нужно следить за положением магнитной стрелки. Если она начнет отклоняться, значит, в этом месте на нее действует магнитное поле проводника с током — наш провод где-то рядом.

    Чтобы определить направление тока в этом проводе, посмотрим, куда указывает северный полюс стрелки компаса. Его направление будет совпадать с направлением магнитных линий. Если он повернется вправо, то ток направлен вверх, а если влево, то ток направлен вниз.

    5
    5
    5Количество опыта, полученного за урок

    Оценить урок

    Спасибо, что помогаете нам стать лучше!

    Комментарии

    Получить ещё подсказку

    Трудности? Воспользуйтесь подсказкой

    Верно! Посмотрите пошаговое решение