ЕГЭ
Назад
Библиотека флеш-карточек Создать флеш-карточки
Библиотека тестов Создать тест
Математика Английский язык Тренажёры для мозга ЕГЭ Русский язык Чтение Биология Всеобщая история Окружающий мир
Классы
Темы
Математика Алгебра Геометрия ОГЭ Физика География Биология Химия Всеобщая история История России Обществознание Русский язык Литература ЕГЭ Английский язык
Подобрать занятие
Классы
Темы
НАЗНАЧИТЬ

Электрический заряд. Электроскоп

Содержание

В начале XX века английский физик Джозеф Джон Томсон делает важное для мира науки открытие. Он находит в экспериментах с катодными лучами элементарную частицу атома — электрон. Учитывая свойства данной частицы, было логично сразу предположить, что именно электрон является носителем элементарного, то есть более не делимого, заряда. Оставалось одно: измерить заряд количественно.

Во время наших исследований электростатических явлений нам нередко приходилось прибегать к использованию термина «заряд». Заряды, как мы говорили, скапливаются на поверхности, перераспределяются, перемещаются, вроде как притягиваются или отталкиваются — вот и выходит, что заряд, а не что-либо еще, является причиной каждого электрического явления.

Только… что-то не то. Мы охватили огромное количество вопросов за последние несколько уроков, частично включая даже теорию возникновения материи, однако при этом так и не наметили на пути остановку, где бы заряд выходил на первый план.

Именно заряд, не следствия из его свойств вроде статического электричества. Раз заряд — причина, почему вообще изучение электричества имеет место быть, нам стоит сделать последний рывок перед тем, как статика превратится в динамику. Сегодня мы побываем в экспериментальной лаборатории человека, который получил Нобелевскую премию в 1923 году за капельку масла, наконец перейдем к формулам и тем самым ответим на финальный и, пожалуй, наиболее важный вопрос введения в электрические процессы: что же такое заряд?

Опыт Милликена


Пусть и не с беспрецедентной точностью, но ему одним из первых удалось выразить заряд цифрой. Это Роберт Милликен — американский физик-экспериментатор.

Раз в составе атома есть мобильные частицы, способные взаимодействовать с себе подобными частицами внутри прочих атомов, они, вероятнее всего, являются базисом электрических процессов, если последние рассматривать на атомном уровне. Следовательно, частицы эти обладают неким свойством, что позволяют им при взаимодействии и перераспределении «переносить» вместе с собой электричество — можно грубо сказать, что электричество как бы в них «вшито».

⚡ Второе предположение представим в виде цепочки размышлений:

  • электричество — нечто вроде свойства субатомных частиц;
  • внутри атома находятся два разных вида чем-то похожих друг на друга по «электрическим свойствам» частиц — протоны и электроны;
  • частицы эти по свойствам взаимно исключаются, так как обычно атом находится в состоянии покоя;
  • электроны мобильнее протонов, ведь протоны сконцентрированы в ядре;
  • тогда если измерить количество «электрического свойства» для индивидуального электрона, аналогичное будет работать и для протона.

Попробуем же посчитать это количество. Пусть снизу у нас имеется тело с переизбытком электронов, а сверху тело с недостатком электронов. Если тела объединить в единую систему, они создадут зону взаимного притяжения — атомы с переизбытком электронов будут стремиться «скинуть» лишнее в сторону, где преобладает недостаток.

Капельки масла — что может быть лучше. На капельку, падающую в обычных условиях, действует две силы — сила гравитации $m\vec{g}$ и сила сопротивления среды $F_{С}$. Движение при этом под действием силы гравитации происходит вниз. С помощью специального устройства можно зафиксировать предельную скорость падения, когда сила сопротивления сравнивается с гравитационной.

Равнодействующая сил в таком случае равна нулю, и тело, как следствие, падает равномерно, не в ускоренном состоянии. Это позволит рассчитать вес и массу.

Электрическая сила

Когда капелька начинает движение под действием электрической силы, интересно, что направление движения меняется: электрическая сила в нашем эксперименте превосходит гравитационную и аэродинамическую. Можно также дождаться нуля равнодействующей, за счет этого определить предельную скорость подъема, что позволит нам в свою очередь вычислить, сколько электрической силы действует на капельку.

Электрическая сила отличается по своему «нутру» от механических сил: к примеру, и гравитационная сила, и электрическая обе действуют на объект без прямого контакта, условно на расстоянии, однако при этом электрическая сила явно действует не на массу, а как раз обуславливается количеством в теле «электрического свойства». Чем больше количество «электрического свойства», тем больше электрическая сила, — по аналогии, чем больше масса, тем быстрее тело притягивается к Земле.

В общей сложности, «электрическое свойство» — такая же фундаментальная единица, как и масса. Простой итог: «электрическое свойство» субатомных частиц было принято наречь электрическом зарядом.

Милликен, измеряя показатели электрической силы для множества масляных капель в описанном нами выше эксперименте, увидел потрясающую закономерность. Численное значение заряда капелек все время выходило кратным одному и тому же числу. Это полностью вписывалось в понимание на тот момент атомного строения вещества: в капельке ну никак не может быть $4.54$ электрона — их либо $4$, либо $5$.

Примерно число по расчетам было следующее:

$$1.6\cdot10^{-19}$$

Определение электрического заряда

Милликену подобным элегантным опытом удалось приблизительно подсчитать, каким количеством заряда обладает один электрон. Заодно продемонстрировать, что «электрическое свойство», то есть заряд — реальная физическая величина и абсолютно конкретное явление.  

Перейдем от абстракций к определениям:

Электрический заряд — фундаментальная величина, определяющая способность частицы вступать в электрические взаимодействия.

Повторимся, что заряд отдаленно напоминает массу — его наличие в природе так же фундаментально, и именно поэтому это слово и было использовано нами в определении выше. Заряд просто существует, являясь свойством субатомных частиц. Его источник — частички, протоны и нейтроны, которые его «переносят».

Элементарное значение заряда, более не делимое, мы с вами уже вывели. Давайте еще раз его запишем, чуть точнее, и дадим ему единицу измерения:

Элементарное значение заряда $e$ равняется $1,602 176 634\cdot10^{−19}$. Заряд измеряется в кулонах — $Кл$.


Наша галерея ключевых фигур физики электричества продолжает пополняться. Добавим туда Шарля Кулона — французского физика-инженера.

В кулонах — в честь французского физика Шарля Кулона, что подарил миру науки один безумно важный закон взаимодействия зарядов. Его нам еще предстоит изучить. Пока что нам бы разобраться с зарядом в общем, а о том, как они меж собой взаимодействуют, хорошо говорить, когда определены основы.

На заметку. В типовых задачах, конечно, использование точного значения осложняет решение, поэтому обычно его округляют до записанного выше $1.6\cdot10^{-19}\,Кл$.

Заряд: протон, нейтрон, электрон

ПротонЭлектронНейтрон
e-e0

Впрочем, ничего нового, всего лишь иными словами. Несмотря на то, что преимущественно электрон сидит во главе электрического стола и обуславливает своим числом общий заряд тела, аналогичный заряд, с количественной точки зрения, присутствует и у протона, положительной частицы. Ровно сколько элементарного заряда переносит один электрон, ровно столько же — протон. С противоположным знаком. Нейтрон, как мы помним, зарядом не обладает. Его задача — «образовывать» массу атома. Поэтому его заряд принимают за ноль. Ну, о том, что разноименные заряды притягиваются, а одноименные отталкиваются, думаем, говорить вновь не нужно.

Однако кое-что поясним. Когда произносят слово «заряд», обычно имеют в виду заряд тела, никак не частиц. Набить атом лишними протонами или изъять их — задача чрезмерно трудоемкая, поэтому не забывайте, что положительный заряд тела чаще всего образуется за счет недостатка электронов: когда протонов в атоме становится больше электронов, общий заряд смещается в положительную сторону.

С переизбытком электронов то же самое. В обычном атоме количество протонов и электронов совпадает, и стоит электронам изменить свое количество, меняется заряд атома. Как следствие — всего тела.

Устройство для определения заряда — электроскоп

Простейшее устройство, с помощью которого можно обнаружить наличие заряда, называется электроскоп. В стеклянный сосуд, с предварительно откачанным воздухом, помещают металлический стержень — он выполняет роль проводника электричества. На концах стержня снизу подвешиваются тонкие листочки фольги.

Если прикоснуться к концу стержня сверху заряженным предметом, электроны, от стержня до листочков, начнут перераспределяться.

Подумайте, а каким образом перераспределяются электроны? Зачем нужен проводник? Что произойдет с листочками, когда к ним прикоснуться заряженным предметом?

Свойства электрического заряда

Свойства зарядов не ограничиваются наличием разнородности в характере взаимодействия. И тем, что разнородное притягивается. Даже по этим двум положениям очевидно, что заряд — прямое следствие электронной структуры атома, поэтому ряд прочих свойств так же обуславливается фактом, что внутри атома располагается фиксированное количество электронов и протонов. На основе этого мы можем, как минимум, выделить еще три свойства-следствия.

Именно:

— исчисляемость заряда;
— сложение заряда;
— закон сохранения заряда.

Заряд складывается и вычитается

Заряды по своей природе похожи на слагаемые в математике, и все благодаря исчисляемости электронов. Дабы это проиллюстрировать, представим атом, к которому присоединилось два лишних электрона.

Вместе с собой они принесли «двойную порцию» отрицательного элементарного заряда. Для наглядности вновь обратимся к углероду, под порядковым номером 6. Следовательно, атом углерода содержит 6 протонов и столько же электронов. Пусть два электрона присоединились к углероду, что изменило его состав частиц до 8 электронов и 6 протонов.

Общий заряд атома до присоединения: $-6e+6e=0$.

Заряд после присоединения: $-6e+6e-2e=-2e$.

Правда… тело состоит из огромного количества атомов, и выражать его суммарный заряд суммой элементарных зарядов — труд титанический. Вспомним, что заряд одного электрона выражается значением $-0.00000000000000000016\,Кл$. Поэтому обычно дается заряд для всего тела и обозначается отдельной литерой $q$. Однако алгебраического подхода к суммированию заряда это не меняет.

Так что можно записать следующую формулу в общем для системы тел:

$$\sum{Q_{общ}}=q_1+q_2+q_3+…+q_n,$$

где $Q_{общ}$ — общий заряд системы, $q_n$ — значение заряда тела, $n$ — количество тел в системе.

Заряд сохраняется

Электроны из ниоткуда не возникают и никуда бесследно не исчезают. Звучит знакомо, согласитесь? Вот почему, говоря о распределении заряда в замкнутой системе, упоминают закон сохранения заряда. Заряд переходит от одного тела к другому и сохраняется, подобно энергии. Безусловно, если систему разомкнуть, к примеру, от вакуума перейти к наличию в среде воздуха, электроны могут присоединяться к атомам элементов, содержащихся в воздухе, или «умыкнуть» парочку электронов. После кто-то откроет окно, воздушные массы придут в движение и электроны, некогда входящие в состав заряда системы, улетят путешествовать дальше. Тем не менее, заряд не исчез. Всего лишь передислоцировался.   

Выразить данное свойство формулой можно так:

$$\sum{Q_{общ}}=q_1+q_2+q_3+…+q_n=const$$

Закон сохранения электрического заряда. Алгебраическая сумма зарядов замкнутой системы остается постоянной величиной.

Заряд исчисляется

Один электрон обладает зарядом примерно величиной в $-0.00000000000000000016\,Кл$. Тогда, в $1\,Кл$ заряда содержится где-то квинтиллион электронов. Вернее, $6.28\cdot10^{18}$ электронов. Сообщает нам это о том, что заряд всегда поддается исчислению с точки зрения элементарных частиц. Скажем, если некое тело обладает зарядом $q$, то связь его с количеством электронов и протонов может быть выражена следующим образом:

$$q=n_2\cdot{e}-n_1\cdot{e},$$

где $q$ — заряд тела, $e$ — постоянная элементарного заряда, $n_2$ — количество протонов в теле, $n_1$ — количество электронов.

Поскольку протоны располагаются в ядре и редко имеют отношение к общему заряду тела, формулу можно упростить, оставив в ней только компоненту с количеством электронов. Все-таки электронный дисбаланс в подавляющем большинстве случаев приводит к тому, что тело обладает неким показателем заряда.

Отсюда имеем следующее:

$$q=n_E\cdot{e}$$

где $q$ — заряд тела, $e$ — постоянная элементарного заряда, $n_E$ — показатель электронного дисбаланса (значение переизбытка или недостатка электронов).

Итоги раздела

Поздравляем!

Где-то было сложно, где-то было много, но вы справились и полностью завершили раздел введения в электрические процессы. Теперь вы отличаете трибоэлектричество от пироэлектричества, умеете показывать фокусы с турмалином, владеете необычными терминами вроде «валентность» и знаете, что такое заряд. Ни много ни мало, но это отличная база, чтобы следовать дальше.

Пока что электричество для нас — это сосредоточение заряда. Его движение практически не описывалось, в особенности на длинные дистанции. Однако самые восхитительные вещи, должны вам доложить, все же происходят, когда заряд путешествует не локально от тела к телу, а охватывает огромные расстояния. Например, от вашей розетки до электростанции. Как «накопить» столь существенный заряд? Как заставить электроны перемещаться на дистанции в сотни километров? Перемещаются ли электроны вовсе?

Ответы на эти и многие другие вопросы вас удивят. И их мы охватим уже в следующем разделе.

А сейчас — «повторение — мать учения». Приглашаем пройти тестирование по разделу, закрепить изученное, а также ознакомиться с рубрикой «Занимательное дополнение» и приоткрыть завесу тайны над одним из самых загадочных электростатических явлений природы — молнией.

5
5
1
Количество опыта, полученного за урок 5

Оценить урок

Отзыв отправлен. Спасибо, что помогаете нам стать лучше!

Комментарии

Получить ещё подсказку

Трудности? Воспользуйтесь подсказкой

Верно! Посмотрите пошаговое решение

НАЗНАЧИТЬ