ЕГЭ
Назад
Библиотека флеш-карточек Создать флеш-карточки
Библиотека тестов Создать тест
Математика Английский язык Тренажёры для мозга ЕГЭ Русский язык Чтение Биология Всеобщая история Окружающий мир
Классы
Темы
Математика Алгебра Геометрия ОГЭ Физика География Биология Химия Всеобщая история История России Обществознание Русский язык Литература ЕГЭ Английский язык
Подобрать занятие
Классы
Темы

17. Простейшие уравнения: #183338

Задание #183338
Задание было решено верно
Задание было решено неверно

Найдите корень уравнения $\log_{7}(x^2-5x + 6) = \log_{7}(x-2)$.

Если логарифмы с одинаковыми основаниями равны, то равны и их выражения под знаком логарифма: $$x^2-5x + 6 = x-2$$ Перенесем все слагаемые в одну сторону: $$x^2-6x + 8 = 0$$ Решим квадратное уравнение через дискриминант: $$D = b^2-4ac = (-6)^2-4 \cdot 1 \cdot 8 = 36 -32 = 4$$ $$\sqrt{D} = 2$$ Корни уравнения: $$x = \dfrac{6 \pm 2}{2}$$ $$x = 4 \quad \text{или} \quad x = 2$$

Проверим, чтобы выражения под логарифмами были положительными:

$1.$ Для $x = 4$: $$x^2-5x + 6 = 16-20 + 6 = 2 > 0$$ $$x-2 = 4-2 = 2 > 0$$ Корень $x = 4$ подходит.

$2.$ Для $x = 2$: $$x^2-5x + 6 = 4-10 + 6 = 0$$ не подходит, так как выражение под логарифмом должно быть строго больше нуля.

Показать
Очки опыта 20