Аватар Неизвестный
Личный кабинет Кабинет родителя Кабинет учителя Настройки Выйти Войти Регистрация Родителю Подписка
КАРТОЧКИ
ТРЕНАЖЁРЫ
КУРСЫ
Подобрать занятие
Подобрать занятие
Классы
Темы

Упражнение № 3

Условие

Найдите значение дроби:$$а)\space\frac{51+17^2}{10}; \quad б)\space\frac{37^2+111}{40}.$$

Показать теоретическую справку

Скрыть

Прежде чем выполнять вычисления заметим, что в числителе присутствует квадрат числа, который мы можем представить в виде произведения.

Затем выделим общий множитель у слагаемых числителя и произведем сокращение со знаменателем согласно основному свойству дроби.

Далее выполним расчеты.

Подробное решение

  1. Решим пример под буквой а:

    $$\frac{51+17^2}{10}$$

  2. Разложим на множители слагаемые в числителе:

    $$\frac{\textcolor{blue}{51}+\textcolor{darkgreen}{17^2}}{10}=\frac{\textcolor{blue}{3 \cdot 17}+\textcolor{darkgreen}{17 \cdot 17}}{10}$$

  3. Вынесем общий множитель в числителе за скобки:

    $$\frac{3 \cdot \textcolor{coral}{17}+17 \cdot \textcolor{coral}{17}}{10}=\frac{\textcolor{coral}{17}(3+17)}{10}$$

  4. Произведем вычисления:

    $$\frac{17(\textcolor{purple}{3+17})}{10}=\frac{17 \cdot {}^{2}\cancel{\textcolor{purple}{20}}}{\cancel{10}}=\frac{17 \cdot 2}{1} = 34$$

  5. Решим пример под буквой б:

    $$\frac{37^2+111}{40}$$

  6. Разложим на множители слагаемые в числителе:

    $$\frac{\textcolor{darkgreen}{37^2}+\textcolor{blue}{111}}{40}=\frac{\textcolor{darkgreen}{37 \cdot 37} +\textcolor{blue}{3 \cdot 37}}{40}$$

  7. Вынесем общий множитель в числителе за скобки:

    $$\frac{37 \cdot \textcolor{coral}{37} +3 \cdot \textcolor{coral}{37}}{40}=\frac{\textcolor{coral}{37}(37+3)}{40}$$

  8. Произведем вычисления:

    $$\frac{37(\textcolor{purple}{37+3})}{40}=\frac{37 \cdot \cancel{\textcolor{purple}{40}}}{\cancel{40}}=37$$

  9. Ответ

    $а) \space34; \space б) \space37.$

Оценить решение

Отзыв отправлен. Спасибо, что помогаете нам стать лучше!

Комментарии